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SUMMARY 
Hodograph methods are applied to determine the flow at 

high subsonic and sonic velocities past two-dimensional, thin, 
symmetrical bodies. The boundary value problem for the 
determination of the stream function Y, which in the present 
theory is a solution of Tricomi’s equation, is simplified by the 
assumption of a free stream breakaway at sonic velocity from 
the shoulder of the body. A solution is obtained in terms of 
Bessel functions. 

In  pQ2 and 3 the flow past a wedge of small angle is discussed 
and expressions are obtained for the pressure on the nose, the 
drag coefficient and the width of the wake. A comparison with the 
corresponding results in the case of sonic velocity derived by the 
more complex analysis of Guderley & Yoshihara (1950) shows 
that the present simpler theory yields very similar values for the 
pressure over the nose. 

In Q 4 the flow at sonic velocity past a profile which is a first-order 
perturbation upon a wedge profile is analysed on the basis of 
the same free streamline theory. The flow pattern is obtained 
past an arbitrarily speciJed body by an application of the Hankel 
inversion theorem and an expression is deduced for the drag. 

1. INTRODUCTION 
In the determination of the steady two-dimensional flow of a non-viscous 

gas past a symmetric obstacle various methods, both approximate and 
exact, are available provided the velocity of the gas throughout the flow 
field is bounded away from the local velocity of sound, either above or 
below. But in the neighbourhood of sonic velocity the approximate methods 
in general break down because of the change in type from elliptic to hyperbolic 
.of the relevant differential equation at this point. A powerful method of 
overcoming some of the difficulties is the hodograph transformation. By 
means of this, the stream function Y can be written as a function of the 
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velocity variables and the resulting differential equation is linear. Further 
it permits a solution by separation of variables in terms of trigonometric 
or hyperbolic functions and of certain hypergeometric functions usually 
denoted by $%(T). Here n is a parameter, real or complex, and 7 = q2/& 
where q is the velocity of the gas and qm is the maximum velocity attainable 
by the gas when subject to adiabatic expansion. A description of the main 
properties of $%(T) has been given by Lighthill (1947). Suppose now that 
the velocity of the gas is nearly sonic everywhere and that the polar velocity 
angle 0 is small. Then the Cartesian components of velocity U and I/' 
(where P = 0 at infinity upstream of the obstacle) can be written as 
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U = a"--', 

v = v', 

where u' and v' are small. Here ay: is the velocity of the gas when the Mach 
number M is 1. The equation for Y can now be approximated by 

a 2 y  y+i PY - f- u'- = 0 
au"2 a" au'2 ' 

where y is the adiabatic index of the gas. 

this becomes 
By defining dimensionless variables u = ( y  + l)u'/a+, v = ( y  + l)v'/u", 

a2yP a2yP  
au2 + u- = 

av2  
0, - 

the well-known equation of Tricomi. 
Roughly speaking there are two main methods of applying the hodograph 

transformation to the problem of flow past a body. One is to use the 
solutions $,(T) of the exact equations and, with analogous problems in 
incompressible flow as a guide, to write the stream function as a series 
of the form Y = 2 a,$,(T)sinnO. In  general the body shape which this 
solution gives has to be determined subsequently ; the coefficients a, 
cannot be specified for a body of arbitrary shape. This is a very unsatis- 
factory feature of the method but the difficulties may be overcome in the 
cases where the streamline Y = 0, the dividing streamline part of which 
follows the body contour, consists of portions on which either q or 8 is 
constant. In general such patterns in incompressible flow are preserved 
in the generalization to allow for compressibility. Thus, for example, the 
problem of flow past a wedge when the streamline breaks away from the 
shoulder with constant velocity equal to the velocity at infinity upstream 
can be solved exactly for any wedge angle and any velocity at infinity, 
provided M I  < 1. The suffix 1 will in future refer to conditions at infinity 
upstream. 

An alternative method, much favoured by American workers in this 
field, is to use the Tricomi approximation and to set up the problem directly 
in the hodograph plane. An essential requirement in this approach is the 
determination of the singularity in the hodograph plane corresponding to 
the velocity at infinity. A singularity is clearly located here, since all the 



Two-dimensional subsonic and sonic $ow past thin bodies 95 

streamlines both originate from and return to this point. The singularity 
is consequently ‘ of doublet type ’ and this may also be surmised by con- 
sideration of the corresponding singularity in incompressible theory. 
However, while this singularity has been successfully identified by a number 
Qf authors, the same sort of difficulties arise with the other boundary 
conditions as previously. For a given boundary in the physical plane 
it is not in general possible to determine the relation holding between 
the velocity variables on this boundary and this means that the shape of 
the streamline Y = 0 in the hodograph plane cannot be predetermined. 

vector is constant on Y? = 0, a solution of the problem is forthcoming. 
Sections 2 and 3 of the present paper are concerned with discussion 

of flow past a wedge of small angle when the velocity at infinity is subsonic 
or sonic. For such a problem in incompressible flow when the velocity at 
infinity is q,, the standard methods of Kirchhoff and Helmholtz lead to a 
solution in which the flow breaks away from the shoulder at q = q1 and the 
free streamline which starts at the shoulder retains this constant velocity 
to infinity downstream. It is not 
desirable to obtain a similar solution for the case of compressible flow 
when the velocity at infinity upstream is subsonic because experimental 
evidence shows that, for reasonably high values of M,, the gas is accelerated 
up the wedge side until it attains sonic velocity at the shoulder. We shall 
therefore select a flow pattern which exhibits this feature and the appropriate 
solution of Tricomi’s equation will then be found. The following model 
will be adopted. The gas comprising the dividing streamline Y = 0 
starts from infinity upstream and moves in a straight line up to the stagnation 
point at the tip of the wedge. It then accelerates up the wedge side, reaching 
sonic velocity at the shoulder. This velocity is retained until the streamline 
becomes parallel again to the free stream. It then remains straight, 
decelerating from sonic velocity to the velocity at infinity. We note that 
the streamline Y = 0 comes within the general category we have mentioned 
in that it consists of portions along which either the magnitude or the 
direction of the velocity vector remains constant. 

This model has the advantage of yielding the relatively simple analytical 
solution developed in the next section while retaining the essential physical 
characteristics of flow past a wedge. In practice it might be expected that 
the Mach number of the streamline separating from the shoulder will be 
somewhat greater than 1, but the effect of this, particularly in the region 
upstream of the shoulder, will be small and may be neglected. A further 
advantage is that this is the type of model which Roshko (1954) adopted 
in studies of flow of incompressible fluid past bluff bodies. The fact that 
Roshko obtained such good agreement with experimental results using 
this ‘ notched hodograph ’ model suggests that this is a good basis on which 
to attempt a solution. Of course, in the limit as MI -+ 1, we obtain the 
problem of the wedge in a sonic stream with a free streamline at sonic 
velocity extending from the shoulder to infinity. As has been mentioned, 

However, as before, when either the magnitude or dimtion of thg Yd8Sity 

Throughout the flow field q < q,. 
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this particular problem can be solved exactly, that is, in terms of the exact 
differential equation for the stream function as distinct from the transonic 
approximation, but the leading term of this exact solution for small wedge 
angles is the limiting case of the problem considered here as MI .+ 1. 
The expression for the stream function coincides with that of Imai (1952) 
who used a different approach. Imai based his solution on the incom- 
pressible flow and then replaced powers of the velocity by associated Bessel 
functions. His results, and those obtained by Mackie & Pack (1955) are 
discussed in 3 3. 

This limiting case is important because it gives a fairly simple represen- 
tation of a wedge in a sonic stream and therefore it can be compared with the 
solution of Guderley & Yoshihara (1950). This solution was derived to 
represent the flow of a gas for which MI = 1 past a wedge profile of small 
angle up to the limiting Mach wave emanating from the shoulder. Down- 
stream from the limiting characteristic any disturbance introduced will not 
affect the flow before it and consequently the continuation of the solution 
can be performed by the method of characteristics in a way which is 
.determined by the subsequent profile of the object (parallel sides, diamond 
shape, etc.). When MI = 1 a new difficulty is encountered in the determina- 
tion of the correct singularity in the hodograph plane. Whereas a subsonic 
singularity is isolated, occurring as it does in the elliptic region of the 
hodograph plane, the singularity is now at the origin and will be propagated 
along the characteristic in the hyperbolic part of the plane which starts 
from the origin. This characteristic maps into the limiting Mach wave in 
i n  the physical plane and care must be taken to choose a singularity which 
does not map this characteristic in the hodograph plane to  infinity in the 
physical plane. The correct determination of the singularity and the 
subsequent addition of non-singular terms to satisfy the boundary conditions 
is a matter of considerable complexity and to keep the analysis manageable 
Guderley & Yoshihara found a certain amount of asymptotic approximation 
unavoidable. Thus it is of interest to compare the mathematically much 
simpler model of the ' free streamline ' theory with the solution of Guderley 
& Yoshihara. The pressure (and hence velocity) distribution on the wedge 
side shows very little difference between the two solutions. A specific 
comparison is made in 4 3. 

The fact that the discrepancy is small is not surprising on physical 
grounds. For both solutions describe a flow with a stagnation point at 
the tip and sonic velocity at the shoulder of the wedge, while the flow at 
a great distance from the wedge is uniform with M = 1. The difference 
occurs in the form of solution immediately downstream of the shoulder 
and the upstream influence of this is of necessity small in a near sonic stream. 
Thus the principal difficulty in the work of Guderley & Yoshihara, which is 
the correct determination of the flow between the sonic line and the limiting 
characteristic, does not arise here since the whole physical plane (exclusive, 
of course, of the wake) is mapped into the elliptic part of the hodograph 
plane bounded by the sonic line. The absence of a supersonic region 
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means further that no limit lines can appear. The occurrence of limit 
lines is an ever present danger in the hodograph theory of supersonic flow 
as their images are not readily detected in the hodograph plane but they 
render the transition to the physical plane meaningless. 

The satisfactory representation thus obtained of the flow pattern 
upstream of the shoulder justifies an extension which is carried out in § 4. 
A profile is considered which is a first-order perturbation on a wedge 
profile. The corresponding flow past this profile can be obtained by an 
application of the Hankel inversion theorem. An unusual advantage of 
this solution is that it can be obtained for any given first-order perturbation 
in the physical plane and does not involve the a posteriori determination 
of the bounding streamline. An analytic expression for the drag on such 
a body is given in the general case. 

2. THE WEDGE IN A SUBSONIC STREAM 

Before proceeding we shall summarize briefly the relationships holding 
between the physical variables. It should be remembered that in many cases 
these relations hold only within the limits of the transonic approximation. 

We have already defined u and v. The pressure and density are p and p 
respectively. The Mach number M is given by 

1-M2=U. 

The polar angle B is simply related to v by means of the equation v = (7 + 1)B. 
The equation of continuity and the condition for irrotational flow may be 
written respectively as 

uu, - vy = 0, uy + 0, = 0. 

Inverting these, we get the hodograph equations 

uy, - xu = 0, x, + y u  = 0. 

‘These lead immediately to Tricomi’s equation 

Yuu+?Yvv = 0, 

in which u > 0 represents subsonic flow. Thus y satisfies the same 
differential equation as Y and it may be shown that ‘F is a simple multiple 
of y .  Similarly @; the velocity potential, is a multiple of x and in much of 
what follows we shall work with x and y as dependent variables instead 
of @ and Y. I n  subsequent work with the flow nowhere supersonic we 
shall find it convenient to use a new variable r defined by 

Y = 321312. (2) 

Tricomi’s equation may then be solved according to the usual procedure 
of separation of variables and simple solutions are obtained of the type 
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where 'i3R.l,a(Xr) is any linear combination of Bessel functions of order 8 
and X may be real or imaginary. 

The flow pattern described in the previous section is shown in figure 1. 
The figure is largely self-explanatory. Because of symmetry only the flow 
in the upper half-plane y > 0 need be considered. The dividing stream- 
line Y = 0 is the line EOBCD. Along EO the velocity decreases from its 
(subsonic) value at infinity to zero at 0, the tip of the wedge. Along the 
wedge side OB we have v = vo = (y + 1)6 where 6 is the semi-angle of the 
wedge. On BC the flow is sonic and along CD, a = 0, while the velocity 
decreases from sonic to its value at infinity upstream. 

Y 
4 

Figure 1. Physical plane. 

The boundary value problem is now set up in the hodograph plane 
which is shown in figure 2. OBCDEO is the line y = 0 and two other lines 
of constant y are also sketched. There is a singularity at the point where 
D and E coincide and in addition we must have 

y = O  o n v = O ,  u > O ,  

y = O  on v = v o ,  u 2 0 ,  

y = O  on u = O ,  0 t v  < v o .  

The stagnation condition at the tip gives, in accordance with the linearization 
principle, 

y=O,  x = O  asu-+co. 

Finally if the wedge is of unit length we must have 

x = l  a t v = v , ,  u = O .  

It should be noted that the problem now formulated,is very similar 
to that considered by Cole (1951) in which the boundary condition along 
u = 0 is not y = 0 but ay/& = 0. This results from the condition he 
imposes that the sonic line be straight and normal t? the direction pf the 
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flow at infinity. A solution of the ,present problem may be obtained by 
a procedure similar to that carried out in $4 of Cole’s paper. It turns out 
that the required solution is of the type rll in Cole’s notation which he 
rejects. This is 

sinh h(v, - v) 
y = Ar1/3 1 ,, sinhhv, J1/3(b)J1/3(hr1)A dA. (3) 

Here A is a constant which will be fixed by the condition that the wedge 
is of unit length, r1 is also a constant and is the value of r corresponding to 
u = ul, the value of u at infinity upstream. 

V 

Figure 2. Hodograph plane. 

Equations (1) now enable the corresponding x coordinate to be found. 
After a little analysis this is seen to be 

The arbitrary constant which appears in this determination of x is easily 
shown to be zero because of the stagnation condition x = 0 as r --f co. 

Since x = 1 at the shoulder where z, = vo and Y = 0 we obtain from (4) 

I?(+) i ,) sinhhv, 

On expanding the Bessel function, setting ha, = t and interchanging 

4)1‘32213 X ~ ~ J , , ~ ( X ~ ~ )  
dh . 1 =  

orders of summation and integration we get 

Making use of a well-known representation of the Riemann zeta function 
((s), we obtain finally after some algebra 

( 5 )  
1)5(2n+{) A-113 3 y1 113 m ( -  l)”rTn17(n+ii)( 5 22n+513- 

22nn ! .$rL+5/3 
0 

2 
m 1 ! 2 q $ )  % = I )  

1 =- 

This equation determines the constant A.  
G 2  
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In  the subsequent work a series representation for x on the side of the 
wedge will be useful. T o  obtain this we express cosechhv, in its partial 
fraction expansion 

(- l)nhv, 

Substituting this value in (4) with v = vo we finally derive, after some 
manipulation, the following series 

for 0 < r < rl, and 

for 0 < r1 < r. 
A further series representation for x can be obtained for the portion of 

the streamline parallel to the uniform upstream flow. In  this case z, = 0 
and we have to use the partial fraction expansion of cothhv,. We obtain 

for 0 < r < rl .  
T o  summarize, we have the integral representations (3) and (4) of the 

coordinates together with representations (6), (7) and (8) for x as a function 
of r on the straight portions of the bounding streamline. In each case the 
constant A is given by (5 ) .  

We are now able to calculate the drag coefficient C,. This we define 
in the usual way as 

c, = DhPl u:, 

c, = (P -P l ) / tP l  u:. 

where D is the drag on the upper surface of the wedge. The local pressure 
coefficient is defined by 

Then for small 6 we have 

(9) 

the integral being evaluated along the side of the wedge. According to the 
linearized theory it can be shown that 

Hence 
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The procedure is now to substitute the series representations (6) and (7) 
for x. The expression for C, is. obtained as an infinite series. Details of 
the algebra are suppressed but the final form is 

x r ( n  + $)(22n+5/3  - 1)5(2n + $)(3r1/2v0)2n - 2(3r1/2v0)2/3. (12 )  

This may be written in terms of M I  through the relation 
3r1 (1 - M33'2 

221, 6(y+ 1 )  * 

_ -  - 

For values of the free stream Mach number little different from unity 
the drag coefficient may be expanded in powers of 1 - M:. The leading 
terms of such an expansion are 

1.8965'3 26( 1 - M:) 0.49( 1 - M 3 3  + (1 - Mf)' 

{ c 

This expression may be compared with that obtained by Cole. As is 
to be expected, there is a fixed non-zero limit of C, as Ml -+ 1 .  This value 
is discussed in more detail in the next section. 

In figure 1 the point C is the location of the end of the sonic line and 
the point where the wake becomes parallel to the free stream. The 
x-coordinate of C is obtained by letting Y + 0 in (8) and has the value 

- ( y  + l)lj3 y + 1 + 6l/3(y+ 1)7/3 

x, = 

Finally we can calculate H ,  the semi-width of the wake. This is given 
by H = 6 + h where we have to evaluate 

h = ( y  + 1)-l v dx, 

the integral being taken along the sonic line BC. Alternatively we can 
find H by taking a control surface consisting of the streamline EOBCD 
and a second streamline at a large distance from the wedge. The momentum 
principle then gives 

pl H = 6 
1 

p dx +p, (H-  6). 
0 

The first term on the right-hand side is the force in the x-direction 
exerted by the wedge OB and the second term that exerted by the streamline 
BC on the fluid. p ,  is the pressure corresponding to sonic velocity. By 
means of (9), (10) and ( 1 1 )  we obtain 

H = 6 + &(y + ~ ) C , / U ~ .  

This shows that the width of the wake is infinite when the Mach number 
of the free stream is 1. 
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3. THE LIMITING CASE OF THE SONIC FREE STREAM 

We now consider in more detail the limiting case of the solution discussed 
in the previous section when the Mach number at infinity tends to 1. The 
point C of figure 1 now moves to infinity and we have the flow of a gas with 
M I  = 1 past a wedge where streamlines at constant (sonic) velocity break 
away from the shoulder and extend to infinity downstream. This is the 
compressible analogue of the Kirchhoff-Helmholtz flow past a wedge in 
the theory of incompressible flow. Although we can solve this problem 
for compressible flow in terms of solutions of the exact hodograph equations 
the relative simplicity arising from the use of Bessel functions means that 
information can be obtained with very much less labour although at the 
cost of whatever loss of accuracy is inherent in the use of the transonic 
approximation. In this connection it should be noted in particular that the 
approximation enforced by the stagnation condition at the tip of the wedge 
is an unsatisfactory feature. 

Certain of the results we shall derive may be obtained by letting rl + 0 
in formulae of the previous section. It is necessary, however, to exercise 
some caution in performing this operation because of the special nature 
of the singularity in the hodograph plane corresponding to a free stream 
Mach number Ml = 1 to which reference has already been made. For 
example, if we let y1 + 0 in (3), we obtain 

Oo sinh h(w, - w) . h4’3 
J*(W dh, sinhhw, y = Br481 

where B is a constant. It is easy to see that the necessary boundary conditions 
on r = 0 and o = wo are satisfied by this expression but it is not clear that 
y = 0 when w = 0 as the integral does not converge here. It is possible to 
rewrite this integral as a contour integral and then as a series which gives 
an ana lpc  continuation of the solution for o = 0. However, it is more 
natural to start from the series form as this may be written down immediately 
from the analogous incompressible problem, and then to express this as 
a contour integral. The contour integral thus provides the link between 
the series and real integral forms of solution. This approach also obviates 
certain convergence difficulties associated with the derivation of the 
expression for the drag. In the series form, the solution of this free stream- 
line model has been discussed by Imai (1952). It will be seen that an 
approximation made in Imai’s computation is in fact unnecessary. 

If we make use of the standard methods of Kirchhoff and Helmholtz, 
the usual procedure in the hodograph plane in incompressible flow leads 
to the result 

m 

\Ip = A” 2 n(q/ql)n”,6 sin(nrrB/6). 
n= 1 

This solution represents flow which is uniform at infinity with velocity q1 
and which has as a zero streamline a wedge of semi-angle 6 whose axis is 
parallel to the direction of flow. Downstream from the shoulder of the 
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wedge the streamline is one of constant velocity 9,. k“ is a (positive) constant 
scale factor which is generally chosen to make the length of the wedge 
unity. 

As previously observed, equation (14) can be generalized to include the 
solutions of the full hodograph equation and the physical problem just 
described can be solved completely for any subsonic or sonic velocity q1 
(Mackie & Pack 1955). However we shall restrict attention here to 
performing the same operations with reference to the solutions of Tricomi’s 
equation. This consists of replacing qn”/8 where it occurs by r 1 ’ 3 K ~ 3 ( n n r / ~ o ) ,  
where vo = (y + 1)s. Accordingly we can white 

y1j3 Kli3(nrr/yo) n m  
sin -. y = k” 2 n 

n=l y:13 K1/3(nm1/v0) ‘0 

Now if rl = 0 a considerable simplification results, corresponding to 
Since lim x1/3Kl13(z) is a non-zero constant the the case when M, = 1. 

expression becomes 2+0 

m .  

y = k” 2: n 4 ~ 3 r ’ ~ 3 ~ l ~ 3 ( n ~ r / v o ) s i n ( n ~ ~ / v o ) ,  (15) 
n= 1 

where again the precise value of k‘ is as yet unimportant as it will be fixed 
later. 

This series converges for r > 0, that is for M < 1, but not when r = 0. 
T o  examine (15) in more detail we rewrite it as 

We now express W as a contour integral in the form 

C is the contour in the complex v-plane which goes from -ico to ico, 
indented at the origin as shown in figure 3. The equivalence of (16) and (17) 
ca.n be verified by completing the right-hand semi-circle and using the 
asymptotic properties of K1,3(~) combined with the Cauchy theory of 
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residues. The integrand has a branch point at the origin but is one-valued 
in the whole plane cut along the negative real axis. We shall also introduce 
at this stage the contour C'(figure 3 )  at every point of which B ( v )  > 0, 
but which is such that it lies to the left of all the singularities of the integrand 
for which W(v)  > 0. 

If now we write W = Wl + W, where Wl comprises the part of the 
integral from 0 to ioo, we can rewrite (17) as a real integral. In fact we 
obtain 

J.  B. Helliwell and A.  G.  Mackie 

Making use of the formula 

we obtain after some algebra 

y = Y( W )  = ik'n r1I3t4I3 sinh tn( 1 - v/v,)sinh-l t n J l / 3 ( t ~ ~ / ~ o )  dt. I, 
With the substitution t = voh/n, this becomes 

y = @'.r(v,,/7~)~'~r4~ A4I3 sinh h(oo - v)sinh-l Avo J1&b) dh. J: 
Comparison with (3) shows that this is precisely the same expression 

as would be obtained by letting rl -+ 0 in the work of the previous section. 
We can now write 

03 

y = W 3  A4i3 sinhh(a,- v) sinh-lhv0Jll,(hr) dh, (18) 
0 

where 

The value of k is deduced from the limiting cases of ( 3 )  and (5) as rl+O 
but may also be obtained independently. 

Equations (18) and (19) together give the solution past a wedge of unit 
length with a free streamline breaking away from the shoulder at sonic 
velocity. 

Since this result forms the basis of the work in the following section 
we shall discuss the solution in more detail. First we note that (15), the 
imaginary part of (17), and (18), are all representations of the same solution, 
subject to the suitable correlation of the constants k and k'. However (15) 
does not converge when r = 0 for any er while (1 8) does not converge when 
v = 0 for any Y. By a suitable choice of C', the contour in the complex 
v-plane, we can make the integral expression in (17) convergent everywhere 
except at Y = 0, v = 0 where it must have a singularity. One way to do 
this is to choose C' to be the contour consisting of the pair of straight lines 
arg(v) 7 f ( in -  E )  where 0 < E < in, indented if required at 0. The 
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distortion of the contour from C to C’ is easily shown to be valid for some 
range r > 0, v > 0 and the extension to other values of r and v follows 
from an appeal to the principle of analytic continuation. 

The value of the x-coordinate in terms of r and v can be obtained by the 
methods of the previous section in either of the forms 

33 

x = -(3/2) 1r3k’r2/9 2 n4/3K2/3( nvr /vo) cos( nvv/v , ) ,  (20) 
n= 1 

x = (3/2)1/3kr2/3 h4/3 cosh h(vo - v)sinh-1AvoJ-2/3(Ar) dh. (21) 

The pressure can be obtained similarly. However, since these expressions 
again show non-convergence either when r = 0 or v = 0, we shall indicate 
how a rigorous formulation of the drag coefficient can be obtained by means 
of the contour integral representation. 

I:: 

We have 

c, = 26(y + 1)-1 i” n u dx /r 0 dx, 

where L is the length of the wedge, and so 
P 3 3  I rffi 

If now we replace yv by the appropriate contour integral derived from 
(17)’ we can invert the order of integration and obtain expressions such as 
[d3K4/3(x)]F, [Z~~~K,,,(Z)],P. The reason for replacing C by C‘ now 
becomes clear. For since we have performed the integrations with respect 
to u (or I) first, we must have x in the above expressions with a positive real 
part and this can only be done if W(u) > 0 on C’. After some algebra we 
obtain 

C’ can now be replaced by C and the resulting contour integrals are 
standard forms for functions associated with Riemann zeta functions. 
Further algebra now reduces the expression for C,  to exactly that obtained 
when rl is put equal to zero in (12). Numerically we have 

C, = 1*8966/3(y + l)-’/S. (22) 

Some explanation should be given regarding the discrepancy between 
the factor 1-89 appearing in (22) and the numerical results obtained by Imai 
(1952) and by Mackie & Pack (1955). There is an error in computation 
in Imai’s work, and in addition he replaces Kli3(z) by its asymptotic form 
in assessing the drag whereas in fact this is not necessary as the expressions 
can be integrated exactly. Mackie & Pack obtain the drag coefficient for 
small 6 as the leading term of the expression for general 6 when the velocity 
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is sonic. Although the details are not given, the analytic expression is the 
same as that given by the leading term in (12) as rl + 0 but the numerical 
factor is subsequently computed incorrectly and this accounts for the 
discrepancy. 

Comparison with the more elaborate computations of Guderley & 
Yoshihara (1950) based on a solution valid up to the limiting Mach wave 
shows the pressure obtained in the present solution to be slightly higher. 
Figure 4 shows the variation of pressure along the wedge face compared 
with that calculated by Guderley & Yoshihara and the variation is seen 
to be slight. For application in the following section it is desirable to have 
some estimate of the value of r along the wedge face and this is shown by 
plotting r against x in figure 5 .  

'J. B. Helliwell und A. G. Mackie 
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Figure 4. Chordwise pressure distribution. 
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4. THE PERTURBATION PROBLEM AND ITS SOLUTION 

We now consider the flow past a symmetric wedge-type profile of 
arbitrary shape provided this is such as may be represented in the physical 
plane by a small perturbation upon the wedge with straight sides. As in 
the previous section, the Mach number of the flow at infinity upstream is 1. 

The pattern in the physical plane is much as in figure 1 except that the 
line OB is replaced by a curved line lying close to it. We shall take the 
semi-angle at the tip of the new body to be 6 as before but the slope of the 
profile at the shoulder will now be 6'. The equation of the boundary is 
taken to be y = 6x + EF(x) .  In the subsequent work we shall neglect terms 
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which are O(e2). The streamline Y = 0 downstream from the body will 
again be presumed to be one of constant velocity which is the velocity of 
sound. 

We now set up the boundary value problem in the hodograph plane as 
shown in figure 6. y(u,v)  will have a given singularity at the origin DE 
and vanishes on EO and on BD. B is the point (0, a;) where v,!, = (y + 1)6'. 
Further, y = 0 on OB where OB is some unspecified curve into which the 
body profile is mapped. Its equation is of the form v = u 0 + e f ( r ) ,  where 
we recall that Y is related to u by (2). Finally, there is the stagnation 
condition y = 0, x = 0 as r -+ w. 

D 

V 

9 u 

f(r) can now be found. Since OB is a streamline it follows that along it 

Thus 
[F'(x)lcc = dr,u) = (7 + l)-lf(r) on = a0 +ef(r)* (23) 

We now write 
x = x" + EXp, y = y" + €yp, 

where x"(r, v), y*(r, u )  are the values of x and y in the unperturbed flow 
obtained in the previous section for given values of Y and v. If this is 
substituted in (23) we obtain 

f(.) = (r + 1)F'(x"(r, U o ) )  + O(4. (24) 
The function x*(r, vo) is given by (20) or (21) and is shown graphically 

in figure 5. The shape of the streamline in the hodograph plane is now 
given to the first order in E. This result is important for it enables the 
problem to be' set up in the hodograph plane directly from a given con- 
figuration in the physical plane. Thus it avoids the disadvantage of the 
a posteriori determination of the boundary streamline to which reference 
was made in 0 1. 
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The boundary condition on OB requires thaty(r, v) = 0 on v = v,, + e f ( r )  
That is 

y*p, vo+ &)} + E Y p ( Y ,  vo + .f(r)) = 0. 

Y p ( C  .a> = -f(r"Y"/avIV = Va' 

Since y"(r, v,,) = 0 we must have 

This function on the right-hand side, which is known when the shape 
of the profile is known, we denote by H(r). 

In  seeking a solution of the perturbation problem we must therefore 
find a functiony, which vanishes on v = 0 for ail u, on u = 0 for 0 < v < vat 
and which takes the value H(r)  on v = v,,. y p  is non-singular at the origin 
as the doublet-type singularity necessary for the flow is already contained 
in y". Finally y p  must not upset the stagnation condition at x = 0, y = 0. 

All the conditions except (25) are immediately satisfied by a solution of 
the form 

(25) 

- m  

yp = 1 G(A)~l'~J,,,(hr)sinhXv dh. (26)  
- 0  

The condition (25) is satisfied if 

1," G(A)sinh Xv, Y1/3Jl,3(hY) dh = H(r) ,  

and it follows from the Hankel inversion theorem that 

G(h) = - [a H(t)t2'3J1/3(ht) dt. 
sinhhv, . ,, 

The complete solution of the perturbation problem is now y = y" + qp, 
where y" is given by (18) and yx, by (26) and (27). The corresponding 
value of x follows from equations (1). It is x = x" + exr,, where x" is given 
by (21) and 

x, = - (!)ll3 I G(X)r2~SJ_2,~(hr)cosh Au dA. 

An expression is now found for the drag coefficient on the upper half 
of the profile. In estimating this, allowance must be made for the variation 
in slope of the profile and for the fact that the total length is no longer 
necessarily unity. 

0 

The natural extension of the definition is 

1 f=" ds, 
T =  7 j  

CD = f=" C,[6 + (r + I)-'c~(Y)] ds 
r =  m 

where the integration is taken along the side of the profile and the limits 
indicate that it is carried out from the tip to the shoulder. Now on the 
profile 

Hence ds = dx{ 1 + O(e2)} and consequently we can repiace ds in the integrals 
by dx and write 

x = X + + € X P ,  y = €yp.  
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The terms independent of E in the numerator and denominator are 
respectively the drag coefficient of the original straight wedge given by (22) 
which we shall here call C;, and its length which is unity. Then if 
c - - C" + drip we have, after some simplification, 

Inspection of (28) shows that three effects contribute to the change in 
the drag coefficient. The first term represents the effect due to the variation 
in slope of the profile in that the angle between the direction of the free 
stream and the direction in which the pressure acts (namely, normal to 
the surface) varies along the body. The second term is an estimate of the 
effect of the change in the magnitude of the pressure along the body due to 
the perturbation of the wedge profile. The third term is a correction due 
to the change in length of the body and is necessary since C,, is defined 
as a dimensionless quantity. We now recall that H(r)  is by definition 
yp(r,v0). It follows that the integrands of the three terms in (28) are all 
of the same order in 6 and hence that the terms themselves are in descending 
order of magnitude for small 6 since C'z is proportional to S513. It is of 
interest to note that an assessment of the most important term can be made 
without obtaining the explicit solution. For from (24) and (25), H(r)  
depends only on the given perturbation in the physical plane and on the 
solution of the unperturbed problem. Thus for a given profile, the leading 
term in the drag coefficient, CD?, can be quickly evaluated by a numerical 
integration, that is, by evaluating the integral J C z ( d y / d x )  dx* along the 
wedge, where C,X is the pressure coefficient for the unperturbed wedge 
profile and dyldx is the true slope of the new profile. 
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